Registration of a Curve on a Surface Using Differential Properties

نویسندگان

  • Alexis Gourdon
  • Nicholas Ayache
چکیده

This article presents a new method to nd the best spatial registration between a rigid curve and a rigid surface. We show how to locally exploit the knowledge of diierential properties computed on both the curve and the surface to constrain the rigid matching problem. It is in fact possible to write a compatibility equation between a curve point and a surface point, which constrains completely the 6 parameters of the sought rigid displacement. This requires the local computation of third order diierential quantities and leads to an algebraic equation of degree 16. A second approach consists in considering pairs of curve and surface points. It is then possible to use only rst order diierential constraints to compute locally the parameters of the rigid displacement. Each approach leads to a diierent matching algorithm. Although computationally more expensive, the second approach is more robust, and can be accelerated with a preprocessing of the surface data. The paper presents the mathematical details of both approaches, algorithms , and a preliminary experimental study on both synthetic and real 3D medical data. To our knowledge, it is the rst method which takes full advantage of local diierential computations to register a curve on a surface. R esum e : Cet article pr esente une nouvelle approche pour eeectuer le recalage rigide d'une courbe sur une surface. Les caract eristiques dii eren-tielles calcul ees sur la courbe et la surface permettent de contraindre les 6 param etres du recalage rigide. Il est en eeet possible d' ecrire une equation de compatibilit e entre un point d'une courbe et le point homologue de la surface. Cela n ecessite le calcul de d eriv ees jusqu'' a l'ordre 3 et conduit a une equation alg ebrique de degr e 16. Une deuxi eme approche consiste a utiliser des couples de points de la courbe et de la surface. Alors les caract eristiques dii erentielles du premier ordre suusent a estimer localement le d eplacement rigide. Bien que plus gourmande en temps de calcul, cette approche est plus robuste, et peut ^ etre acc eler ee par un pr etraitement de la surface. Apr es avoir d emontr e les contraintes g eom etriques du probl eme, nous pr esenterons les deux types d'algorithmes ainsi que des r esultats obtenus sur des donn ees synth etiques et r eelles. A notre connaissance, il s'agit de la premi ere …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACS Algorithms for Complex Shapes with Certified Numerics and Topology Ridges 3 : Approximation of Ridges and Umbilics on Triangulated Surface Meshes

This paper describes the CGAL package for the approximating the ridges and umbilics of a smooth surface discretized by a triangle mesh. Given a smooth surface, a ridge is a curve along which one of the principal curvatures has an extremum along its curvature line. An umbilic is a point at which both principal curvatures are equal. Ridges define a singular curve —i.e. a self-intersecting curve, ...

متن کامل

Construction of a surface pencil with a common special surface curve

In this study, we introduce a new type of surface curves called $D$-type curve. This curve is defined by the property that the unit Darboux vector $vec{W}_{0} $ of a surface curve $vec{r}(s)$ and unit surface normal $vec{n} $ along the curve $vec{r}(s)$ satisfy the condition $leftlangle vec{n} ,vec{W}_{0} rightrangle =text{constant}$. We point out that a $D$-type curve is a geodesic curve or an...

متن کامل

Finite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories

In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...

متن کامل

Finite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories

In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...

متن کامل

Recognizing Surfaces Using Curve Invariants and Differential Properties of Curves and Surfaces

A general paradigm f o r recognizing 30 objects is offered, and applied to some geometric primitives (spheres, cylinders, cones, and tori). The assumption is that a curve on the surface was measured with high accuracy (for instame, by a sensory robot). Differential invariants of thte curve in one method and differential properties of curves and surfaces in the other are then used to recognize t...

متن کامل

تشخیص آنتی‌ژن اختصاصی پروستات با استفاده از بیوسنسور الکتروشیمیایی مبتنی بر آپتامر

    Background and Objectives: Detection of the biomarkers is one of the effective methods for diagnosis and treatment of prostate cancer. Prostate specific antigen (PSA) is currently the best biomarker available for controlling and detecting this cancer. The purpose of the current study was to design an electrochemical aptamer-based biosensor (electrochemical aptasensor) to measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994